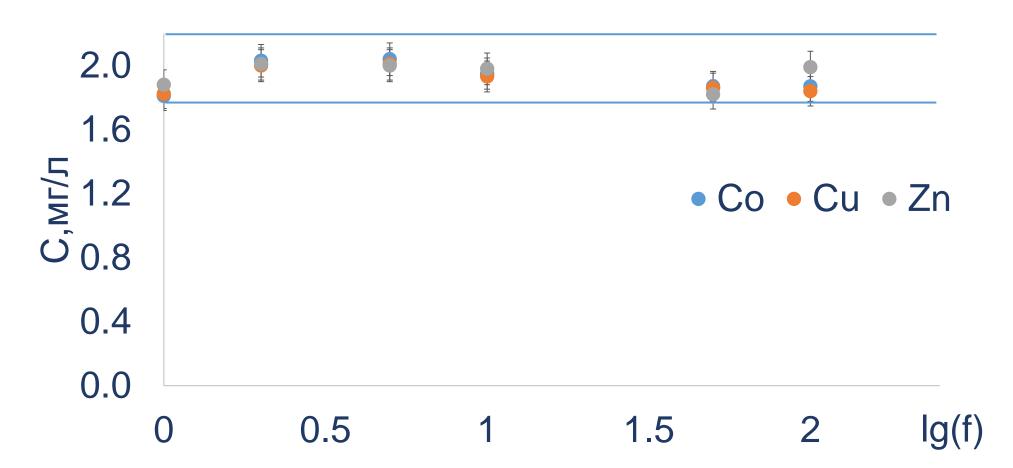
Особенности определения содержания подвижных форм элементов в почвах методом АЭС-ИСП

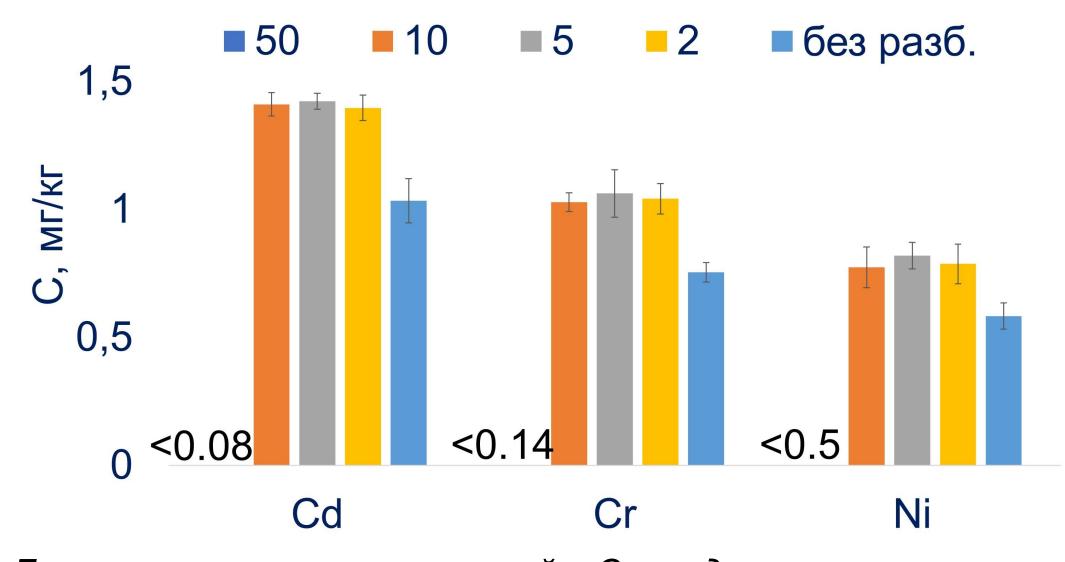
Савинов С.С., Тлеужанова Р.Д. СПбГУ, Санкт-Петербург, Россия

Цель *работы:* изучение матричного влияния в АЭС-ИСП определении подвижных форм элементов в почвах.


Приборы и материалы

Спектральный прибор ICPE-9000 (Shimadzu) при стандартных параметрах. Градуировочные растворы – разбавленные 1% HNO₃ многоэлементные растворы СertiPUR IV и ICP-MS-68B.

Влияние буферного раствора


Концентрация экстрагента не влияет на найденную концентрацию аналита.

Зависимость найденной концентрации С от степени разбавления f на модельных растворах с указанием пределов погрешности (n=3) и допустимого отклонения

Разбавление экстракта почвы

Для устранения матричного влияния можно разбавить экстракт, степень разбавления для разных почв различна, оптимально в 5-10 раз.

Гистограммы концентраций С ряда аналитов в вытяжке из почвы при различной степени разбавления

Проверка правильности

Устранить матричное влияние можно разбавлением (более экспрессно) или минерализацией исходного экстракта.

Результаты анализа пробы почвы (\pm доверительный интервал n=3, P=0.95) при анализе разбавленной вытяжки (C_1), разбавленной вытяжки с соответствующими добавками (C_2), а также концентрации вводимых добавок (C_3), мг/кг

аналит	ации вводимых доб С 1	C_n	C ₂
Ag	<1.0	4.8	4.6±0.4
Al	(16.0±2.0) ·10 ¹	397	$(54\pm4)\cdot10^{1}$
В	2.1±0.3	2.4	4.5±0.3
Ba	24.1±2.1	52	74±6
Bi	<3.3	52	50±4
Cd	1.36±0.15	2.4	3.54±0.25
Со	< 0.16	2.4	2.14±0.11
Cr	1.30±0.09	2.4	3.54±0.29
Cu	2.28±0.18	2.4	4.4±0.3
Fe	$(17.2\pm1.5)\cdot10^{1}$	397	$(56.9\pm2.0)\cdot10^{1}$
Ga	<1.2	52	50±3
K	$(15.6\pm2.6)\cdot10^{1}$	397	$(58\pm5)\cdot10^{1}$
Mg	$(10.1\pm1.3)\cdot10^2$	397	$(14.0\pm1.5)\cdot10^2$
Mn	$(18.2\pm1.4)\cdot10^{1}$	52	$(23.1\pm1.2)\cdot10^{1}$
Mo	<0.3	2.4	2.5±0.4
Na	$(10.6\pm1.0)\cdot10^{1}$	397	$(52\pm 4) \cdot 10^{1}$
Ni	0.79±0.09	2.4	2.98±0.12
Pb	11.0±1.2	52	61±5
Si	310±27	52	356±26
Sr	34.6±2.4	52	82±7
Ti	2.40±0.25	2.4	4.64±0.29
W	<0.9	52	50±6
Zr	< 0.07	2.4	2.26±0.25
Zn	$(13.5\pm1.2)\cdot10^{1}$	397	$(52\pm5)\cdot10^{1}$

Исследования выполнены в ресурсном центре Научного парка СПбГУ "Методы анализа состава вещества". Грант Президента РФ № МК-2476.2021.1.3.